Do climate shocks induce migration? The case of Nepal

Eva-Maria Egger International Fund for Agricultural Development (IFAD) Joint work with Aslihan Arslan (IFAD), Erdgin Mane (FAO), Vanya Slavchevska (CIAT)

ICID – SITES – IFAD

Conference on International Development

Rome 3.10.2018

Motivation

- Climate change projections suggest increase in temperatures and higher variability of rainfall
 - \rightarrow agricultural production becomes riskier
- Diversification one strategy to reduce income variation

 \rightarrow migration = diversification across space (and sector)

- Macro- and micro-level evidence on weather shocks as driver of migration conceptualises migration as reaction not ex-ante strategy (often for methodological reasons)
- Nepal:
 - Highly vulnerable to climate change
 - 80% of population depends on farm income and remittances contribute to around 31% of total GDP

This paper:

- How does climate change affect decision for household member to migrate?
 - Disentangle simultaneous effect of weather variation on agricultural production and migration decision.
 - Differentiate between short-term variation of weather and long-term changes in weather patterns that form expectations
 - → Differentiate between *ex-ante* and *ex-post* strategy
- Unique dataset that combines detailed migration information and weather data.

Data

Household survey representative of five rural districts in Nepal collected in July/August 2017 (*N*=1000 households)

- Over-sample migrant households (50% of sample)
- Modules on demographics, migration history, current migration, remittances, agriculture, housing, women's empowerment

Sample: households that engage in farming (98% of sample) and most recent migration in years 2016 or 2017 (= 632 households)

Climate data:

- Rainfall: aggregated to dekadal rain at ward level from 1981-2016 (CHIRPS, daily, 0.05 degrees (~5 x 5km))
- Temperature: aggregated to dekadal average, maximum and minimum at ward level from 1979-2016 (ECMWF, daily, 0.75 degrees)

Methodology: Simultaneous equation model

• Migration:

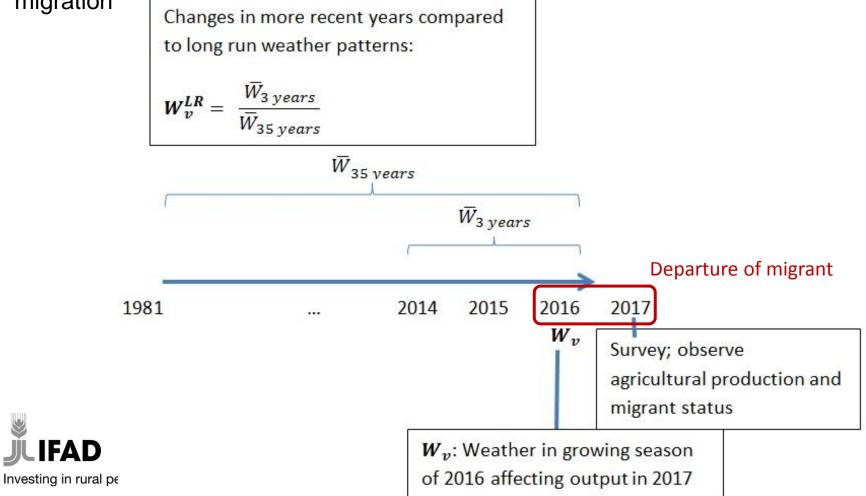
$$P(M_{i} = 1) = f(Y_{i}^{a}, Y_{i}^{na}, Y_{i}^{wage}, W_{v}^{LR}, X_{i}) + u_{i}$$
(1)

• Agricultural income:

$$Y_{i}^{a} = g(M_{i}, W_{v}, I_{i}, Y_{i}^{na}, Y_{i}^{wage}, Z_{i}) + e_{i}$$
(2)

- i = household level
- M_i = Household has a migrant

 $Y_i^a = \log(\text{Total value of crop production per hectare})$


 Y_i^{na} , Y_i^{wage} = income from non-agricultural sources (wage or self-employment)

 W_v^{LR} = Change in weather patterns in years preceding migration

- W_v = weather in year/season of crop production
- I_i = Inputs (expenditure on fertilizers etc., land size)
- X_i , Z_i = household characteristics (ecological zone, size, demographics of head, past migration, ethnic network)
- $u_i, e_i = \text{error terms}, \text{ correlated across equations}$

Data structure and timing

- Weather data: Dekadal panel at ward level (1981-2016)
- Household data: cross-section in 2017, with retrospective information about year of migration

Weather and climate variables

Variables constructed at ward level:

- Short-term weather (W_v) : total monsoon rainfall, percentage deviation of monsoon rainfall from long-run average (positive and negative)
- Long-term changes (W^{LR}_v): positive and negative percentage deviation of seasonal rainfall or temperature measure in 3-years prior to migration relative to long run (35 years) Measures:

Coefficient of Variation (CoV) of winter/monsoon rainfall, seasonality index, average winter/monsoon rainfall, maximum winter/monsoon temperature

Descriptive statistics: Diversification

Table 1: Summary statistics of main variables in migrant and non-migrant households

	Migrant hhs.	Non-Migrant hhs.	Mean Difference
Non-ag. self-employment income	0.10	0.22	-0.12***
Non-ag. self-employment <i>share of income</i> , excluding remittances	0.06	0.13	-0.08***
Non-ag. wage work income	0.19	0.28	-0.09***
Non-ag. wage work <i>share of income</i> , excluding remittances	0.12	0.18	-0.05***
No. of observations	470	494	
note: .01 - ***; .05 - **; .1 - *;			

Point estimates are sample means. Asterisks represent level of statistical significance of t-test/chisquared test of difference in means.

Results: Simultaneous estimation Part I: Crop production

log(Value of total crop production per hectare)				
	coeff.	std.er.		
Total rainfall in monsoon, ward	0.176**	(0.084)		
squared (Total rainfall in monsoon season, ward)	-0.005*	(0.003)		
Percentage deviation of monsoon rainfall from long run monsoon average:				
Positive	0.013*	(0.008)		
Negative	0.022	(0.201)		
Log(total land cultivated in hectare)	-0.302***	(0.053)		
Crop diversity index, count	0.069***	(0.012)		
Log(Expenses in 100 rupees per hectare) for:				
Chemical fertilizers, pesticides and herbicides	0.061***	(0.020)		
Organic fertilizers	0.009	(0.017)		
Hired labor	0.025**	(0.011)		
Ecological zone (Hills=1, Terai=0)	-0.043	(0.092)		
Number of working-age hh members	0.046**	(0.020)		
Member of dominant ethnic group in district	0.102	(0.065)		
Constant	10.001***	(0.770)		
IFAD				

Investing in rural people

 \bigcirc

Results: Simultaneous estimation Part II: Migration

	Prob(Migrant=1)			
	coeff.	std.er.		
Deviation of 3-year average from long run of rain CoV winter				
Absolute positive % deviation	0.033*	(0.017)		
Absolute negative % deviation	-0.012*	(0.006)		
Non-ag self-employment income, dummy	-0.177	(0.156)		
Non-ag wage work income, dummy	-0.275**	(0.128)		
Migration of relative of household	0.271**	(0.113)		
Asset index (housing characteristics, electricity, water	0.186	(0.727)		
and mode of transport)				
Constant	0.291	(2.052)		
coefficient of ag. prod. in migration function	-0.397	(0.245)		
coefficient of migrant dummy in ag. prod. function	-0.013	(0.062)		
Correlation coefficient between error terms	0.294	(0.199)		
Observations	632			
chi2	301.008			
IFAD				

Investing in rural people

Results: Part II, Migration Other weather variables

	Prob(Migrant=1)				
Deviation of 3-year average from long run	-	avg. rain		avg. max. temp.	
of:	index				
		winter	monsoon	winter	monsoon
Positive % deviation	-0.111***	0.011**	-0.042***	-0.510***	0.567***
	(0.042)	(0.004)	(0.008)	(0.144)	(0.157)
Absolute negative % deviation	0.134***	-0.097***	0.061*	-0.233***	0.000
	(0.025)	(0.016)	(0.036)	(0.055)	(.)
coefficient of ag. prod. in migration	-0.405*	-0.327	-0.602***	-0.589***	-0.249
function					
coefficient of migrant dummy in ag. prod.	-0.033	-0.004	-0.048	-0.099	0.041
function					
Correlation coefficient between error	0.355**	0.229	0.504***	0.585***	0.101
terms					
Other controls	Yes	Yes	Yes	Yes	Yes
Observations	632	632	632	632	632
chi2	478.357	406.911	385.849	335.276	384.856

Heterogeneity and robustness of results

Heterogeneity:

- Effect of climatic variables is independent of nonagricultural income share
- More income sources dampen the migration probability under climatic change
- Wealth (asset index) dampens the effects of changing weather patterns on migration

Results robust to:

• 5-year instead of 3-year climatic variables

Conclusions

- Migration is used as diversification strategy in response to changing weather patterns, such as increasing variability of rainfall and thus riskier agricultural production.
- Migration seems to be a substitute for non-agricultural income generation, such as self-employment or wage work. This could point at lack of such opportunities where farmers live.
- Temperature increases are much more likely in all climate models as opposed to rainfall changes. Therefore, we can expect increasing rural out-migration in Nepal if no alternative adaptation strategies are found.

Thank you!

Eva-Maria Egger: <u>e.egger@ifad.org</u>

