### Factors Influencing Adoption And Intensity Of Bioenergy Crops By Farmers In Northern Ghana: The Case Of Jatropha Curcas

Lauretta Sandra Kemeze
ICID-IFAD-SITES Conference
Rome, Italy
04th October 2018



# UNIVERSITY OF GHANA

### **Outline**

- 1. Background
- 2. Problem Statement
- 3. Objective of the study
- 4. Methodology
- 5. Results and discussions
- 6. Conclusions and Recommendations
- 7. References

## **Background**

- Access to energy is a crucial component of poverty alleviation, improving human welfare, and raising living standards
- ➤ about 68 % (620 million) of the population in SSA do not have access to electricity (IEA, 2014)
- ➤ Energy demand is predicted to double from 500 million tonnes oil equivalent (Mtoe) in the year 2000 to 1 000 Mtoe in 2030;
- ➤ In SSA, over 80% of electricity generated is from fossil fuels;
- The heavy reliance on fossil fuels raises serious environmental issues such as depletion of non-renewable resources, Ozone depletion and global warming;

## **Background (Cont'd)**

- > Alternatives to fossil fuels: Wind power, solar, bioenergy, etc
- ➤ Bioenergy is all energy derived from organic matter (FAO, 2004)
- African countries with bioenergy policies: South Africa (2007), Mozambique (2009), Angola (2010), Ghana (2010).
- ➤ Aim of the draft of bioenergy policy for Ghana
  - ➤ to substitute national petroleum fuels consumption with **biofuel** by 10% by 2020 and 20% by 2030



#### **Problem Statement**

➤ In Ghana, bioenergy investments have been based on both food and non-food crops: Palm oil, sugarcane, maize, soybean, cassava and Jatropha.

Advantages (FAO, 2010; Osseweijer et al., 2015)

- ➤ Rural development: create new jobs, increase livelihood and market
- > Diversification of revenue sources from agriculture
- Security of energy supply and access

#### Inconvenients

- > Food insecurity challenges
  - Food crops and production inputs are diverted from food production

    UNIVERSITY OF GHANA
  - Conversion of land from food to bioenergy crop

### **Problem Statement (Cont'd)**

- ➤ Jatropha is a perennial, non-food crop that might contribute in mitigating the challenges of bioenergy
  - Grow on marginal lands
  - > Drought resistant
  - ➤ Generate energy without compromising food security (Boamah, 2014)
  - ➤ Most suitable crop for biodiesel in Ghana
  - ➤ Numerous Jatropha projects have failed;
    - ➤ Large versus small scale
    - ➤ Market Identification
    - ➤ Poor negotiating position, locked into unfair contract for smallholder farmers
    - Lack of local Jatropha processing firms



## **Objective**

Identify the factors explaining farmers' adoption and land acreage allocation to Jatropha in Northern Ghana

## Sampling strategy

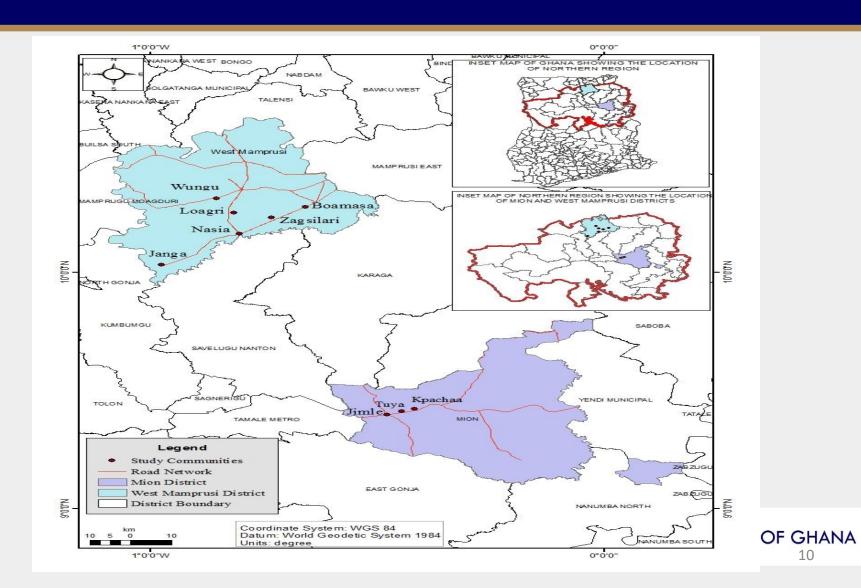
#### > Stratified random sampling

1st stage: Purposive selection of Northern Ghana region

2<sup>nd</sup> stage: Purposive selection of 2 Jatropha growing districts in Northern Ghana: Mion & West Mamprusi(WM)

3rd stage: Random selection of 200 Jatropha farmers:

120 (WM), 80 (Mion) based on Yamane's formula of sample size


$$n = \frac{N}{1 + N(e)^2}$$

- In each community where the Jatropha farmers were surveyed the equal number of non-Jatropha farmers was also randomly surveyed
- The selection of non Jatropha farmers was based on a sample list provided by community leaders

### Distribution of respondents per district and community

| District                  | Community | Adopters | Non-adopters |
|---------------------------|-----------|----------|--------------|
| West Mamprusi<br>District | Zagsilari | 20       | 20           |
|                           | Nasia     | 19       | 19           |
|                           | Boamasa   | 20       | 20           |
|                           | Janga     | 20       | 20           |
|                           | Wungu     | 20       | 20           |
|                           | Loagri    | 21       | 21           |
| Mion District             | Jimle     | 47       | 47           |
|                           | Kpachaa   | 30       | 30           |
|                           | Tuya      | 03       | 03           |
|                           | Total     | 200      | 200          |

### Map of study area



### **Theoretical framework**

#### Random Utility Theory (RUT)

 $\triangleright$  According to the state of adoption, household h utility is approximated as:

$$\begin{cases} U_{hA} = f(Z_h) + \varepsilon_{hA} \\ U_{hN} = f(Z_h) + \varepsilon_{hN} \end{cases}$$

A household h will choose to adopt Jatropha only if the utility derived from adopting is greater than the utility from not adopting:  $U_{hA} > U_{hN}$ 

### Method

#### Double hurdle model

➤ 1<sup>st</sup> step: Decision to adopt Jatropha or not (Participation equation)

$$y_i^* = \beta X_i + v_i$$

➤ 2<sup>nd</sup> step: Decision on the total amount of land allocated to Jatropha (Intensity equation)

$$z_{i}^{*} = \gamma W_{i} + \varepsilon_{i} \qquad z_{i} = \begin{cases} z_{i}^{*} & if \quad y_{i}^{*} > 0 \\ 0 & otherwise \end{cases}$$

## **Explanatory variables**

| Variable            | Definition and measurement                                       | Expected signs |
|---------------------|------------------------------------------------------------------|----------------|
| Gender              | Gender of the respondent $0 = \text{male}$ , $1 = \text{female}$ | -              |
| Age                 | Age of the respondent (in years)                                 | -              |
| Education           | Level of education of the respondent in years                    | +              |
| Number of adults    | Number of adult members of the household (Count units)           | +              |
| Farming Experience  | Farming experience of the respondent (years)                     | +              |
| Farm Size           | Farm size (hectares)                                             | +              |
| Extension Services  | Number of times the respondent had access to ext. sces           | +              |
| Off-farm Activities | Engagement in off-farm activities $0 = No$ , $1 = yes$           | +              |
| Livestock           | Livestock ownership $0 = No$ , $1 = yes$                         | -              |
| FBO                 | Farmer based organization membership $0 = No$ , $1 = yes$        | +              |
| District            | 0 = Mion, 1 = West Mamprusi                                      | +              |
| Credit Access       | Access to credit $0 = \text{No}$ , $1 = \text{yes}$              | +              |
| Distance to Market  | Distance from home to the nearest agricultural market (in km)    | -/+            |
| Size of land owned  | Size of land owned (in hectares)                                 | +              |
| Hired Labour        | Number of man-days hired during 2014 cropping season             | +              |
| Irrigation          | Practice of irrigation $0 = No$ , $1 = yes$                      | +              |
| Risk Attitude       | Degree of Risk attitude                                          | +              |
| Discount Factor     | 1—preference for present 0 otherwise                             |                |

#### Results

- ➤ Being located in West Mamprusi District significantly reduces the adoption of Jatropha by 13.8%.
- ➤ On average, the probability of Jatropha adoption increases by 6.9% each time the farmer has access to extension services (Goswami & Choudhury, 2015)
- ➤ Engagement in off-farm activities decreases the probability of Jatropha adoption by 10.3%
- ➤ Membership of a FBO significantly increases the probability of Jatropha adoption by 20%

### Results (Cont'd)

- ➤ The more risk loving the farmer is, leads to an increase of the probability of Jatropha adoption by 2.9% compared to being a risk avoider
- ➤ Being a female farmer significantly decreases Jatropha land acreage allocation by 0.12 hectare compared to being a male.
- ➤ Access to credit increases Jatropha land acreage allocation by 0.093 hectare

## Results (Cont'd)

| Variables                | Probit          |                | Truncated Regressi | Truncated Regression |  |
|--------------------------|-----------------|----------------|--------------------|----------------------|--|
|                          | Marginal Effect | Standard Error | Marginal           | Standard             |  |
|                          |                 |                | Effect             | error                |  |
| Gender                   | 0.098           | 0.070          | -0.121**           | 0.053                |  |
| District                 | -0.119**        | 0.061          | -0.138***          | 0.052                |  |
| Education                | 0.009           | 0.006          | -0.001             | 0.004                |  |
| Age                      | 0.005**         | 0.002          | 0.002              | 0.002                |  |
| Number of adults         | $0.009^{*}$     | 0.005          | 0.002              | 0.004                |  |
| Farming Experience       | -0.000          | 0.002          | -0.003             | 0.002                |  |
| Farm Size                | -0.039          | 0.026          | -0.023             | 0.022                |  |
| Extension Services       | 0.069***        | 0.024          | 0.016              | 0.015                |  |
| Off-farm Activities      | -0.103**        | 0.049          | -0.006             | 0.040                |  |
| Livestock                | 0.033           | 0.050          | -0.063             | 0.003                |  |
| Credit Access            | 0.014           | 0.064          | $0.093^{*}$        | 0.049                |  |
| Distance to market       | -0.000          | 0.004          | -0.006**           | 0.003                |  |
| Hired Labour             | $0.000^{***}$   | 0.000          | -0.000             | 0.000                |  |
| Size of land owned       | 0.022           | 0.028          | 0.036              | 0.024                |  |
| FBO                      | 0.201***        | 0.051          | 0.019              | 0.039                |  |
| Risk Attitude            | 0.029***        | 0.010          | 0.003              | 0.008                |  |
| Discount factor          | -0.061          | 0.062          | 0.015              | 0.049                |  |
| Irrigation <sub>D2</sub> | -0.015          | 0.159          | 0.141              | 0.128                |  |
| Observations             |                 | 400            |                    | 200                  |  |
| Pseudo                   | 0.1269          |                |                    |                      |  |

0.000

0.000

p-valge<sup>2</sup>

#### **Conclusions and recommendations**

- Access to extension services, credit, FBO membership, risk preferences are key factors of Jatropha adoption in Northern Ghana
- Extension and education programmes and access to credit mechanisms should be developed to promote adoption of perennial bioenergy crops.
- ➤ The development of farmer-based organizations is recommended in order to support Jatropha farmers through trainings and finance and thus increasing their negotiating power.
- ➤ Better incentives framework enhancing the benefits of Jatropha cultivation should be put in place such as the availability of Jatropha oil extraction machine so that vulnerable groups such as youth and women would get in.

## References

FAO. (2010). Bioenergy and global food security: The BEFS Analytical Framework. FAO Environment and Natural Resources Management Series 16. Rome, Italy.

IEA. (2014). Africa Energy Outlook: A focus on energy prospects in Sub Saharan Africa, World Energy Outlook Special Report.

Goswami, K., & Choudhury, H. K. (2015). To grow or not to grow? Factors influencing the adoption of and continuation with Jatropha in North East India. Renewable Energy, 81, 627–638

Osseweijer, P., Watson, H. K., Johnson, F. X., Batistella, M., Cortez, L. A. B., Lynd, L. R., ... Woods, J. (2015). Bioenergy and Food Security. In Bioenergy & Sustainability Policy Brief (pp. 91–136). Paris.

# **Thank You**

