Do migrations that respond to climate variation improve the living standard of households in rural areas? Evidence from Niakhar (Senegal) using two types of migration

Ulrich NGUEMDJO^{1, 2} Valérie DELAUNAY² Richard LALOU²

¹Aix-Marseille School of Economics

²Laboratoire Population Environement et Développement

October 4, 2018

1 Introduction

- 2 Region of study
- **3** Data & Descriptive Statistics
- 4 Empirical models & results

Introduction

- 2 Region of study
- 3 Data & Descriptive Statistics
- Empirical models & results

5 Conclusion

Motivation

Economic vulnerability, a challenge in Sub-Saharan African Countries (*Guillaumont 2006, Karikari 2016*)

Percentage population living with less than 1 dollar a day 2007-2008 (UN, 2008)

ICID-SITE-IFAD Conference

Motivation

data source: EM-DAT: the OFDA/CREDA International disaster database, Université catholique de louvain, Brussels, Belgium.

Ulrich NGUEMDJO (AMSE/LPED)

ICID–SITE–IFAD Conference

In this paper we answer these two questions:

Migration, strategy to cope with climate variation in Niakhar?

We investigate how households in Niakhar react to climate variation in term of migration

In this paper we answer these two questions:

Migration, strategy to cope with climate variation in Niakhar?

We investigate how households in Niakhar react to climate variation in term of migration

Does migration reduce household poverty in Niakhar?

We analyze the effect of migration on the improvement of household living standard between 2003 and 2014

1 Introduction

2 Region of study

3 Data & Descriptive Statistics

Empirical models & results

5 Conclusion

Niakhar

Characteristics of Niakhar

- Location: West of Senegal
- 30 villages
- Climate: Sahelian-Sudanese
- Dominant religion: Muslim (77% in 2013)
- Dominant ethnic group: Sereer (96.7% in 2013)
- Dominant activity: Agriculture
- Low education rate: 50% of men & 75% of women aged 15-24 have no school-base education in 2000 (Delaunay et al. 2013)

1 Introduction

2 Region of study

Empirical models & results

5 Conclusion

Ulrich NGUEMDJO (AMSE/LPED) ICID-SITE-IFAD Conference

- **()** Niakhar Health and Demographic monitoring data base
- 2 Niakhar Goods and Equipments Survey data base: 2003 and 2014
- 3 IRD Senegal Meteorology Data (1998 to 2013)

We define two type of migration:

- Short-term migration :
 - migrant left the household for less than a year, but still consider as resident in the household
- Long-term migration :
 - migrant left the household for more than a year, and sometimes definitively

Descriptives statistics on migration

	Long-term	Short-term
Individual level		
Proportion of male migration	0.398	0.575
	(0.036)	(0.036)
Average age of migrant	18.065	25.980
	(14.629)	(10.831)
Education		
No school	0.730	0.587
	(0.044)	(0.034)
Preschool and Primary	0.165	0.223
	(0.022)	(0.012)
Middle and secondary	0.064	0.106
v	(0.030)	(0.040)
Koranic	0.030	0.069
	(0.015)	(0.006)
University	0.010	0.014
*	(0.005)	(0.004)
Number of individuals involved	9154	14874
Household level		
Number of migration in a household	0.347	2.745
	(.957)	(2.584)
Number of female migration in a household	0.207	1.149
	(0.624)	(1.469)
Number of male migration in a household	0.140	1.597
	(.495)	(1.773)
Number of households involved	1599	2571

Ulrich NGUEMDJO (AMSE/LPED) ICID-S

ICID–SITE–IFAD Conference

Living standard measurements

Three asset indexes build to overcome the lack of household income or expenditure in the data

- Productive assets index :
 - aggregation of agricultural equipments assets: Cart, Horse, Seeder, Hoe, Sheller
- Consumer assets index :
 - aggregation of domestic equipments assets: radio, cooking fuel, tv, bike, moped, car, phone, fridge
- Housing index:
 - Proportion of modern houses (roof in metal sheet, cement or fibro-cement and floor in cement) own by the household

Aggregation method

Multiple Correspondence Analysis (Anderson, 2014)

Ulrich NGUEMDJO (AMSE/LPED)

ICID–SITE–IFAD Conference

October 4, 2018 13 / 22

• Productive & Consumer indexes used to rank the households into decile from 1 to 10 in 2003 and in 2014.

Improvement between 2003 and 2014

- Change in rank between 2003 and 2014 for the Productive & consumer indexes
- Change in the proportion for housing index.

Ulrich NGUEMDJO (AMSE/LPED) ICID-SITE-IFAD Conference

1 Introduction

- 2 Region of study
- 3 Data & Descriptive Statistics
- 4 Empirical models & results

5 Conclusion

How do households react to climate variation?

climate variation measurements

$$Climate_{t} = \frac{Climate_{Level,t} - \mu_{v}^{LR}(Climate_{Level})}{\sigma_{v}^{LR}(Climate_{Level})}$$

- *Climate_t*: Rainfall per raining days, number of rainy days
- $Climate_{Level,t}$, level of climate variable in the region in year t
- $\mu_v^{LR}(Climate_{Level})$, mean value over the last 5-years prior to year t.
- $\sigma_v^{LR}(Climate_{Level})$, standard deviation over the last 5-years prior to year t.

Effect of climate variation on migration

 $Mig_{hvt} = \beta_0 + \beta_1 Climate_{vt} + \beta_2 Climate_{vt} \times Level_{hv_{03}} + \delta X_{hvt} + \pi_h + \tau_v + \nu_t + \epsilon_{hvt}$

h = household; v = village; t = year; Mig = Migrations; Level = Living standards; X = Control variables

Ulrich NGUEMDJO (AMSE/LPED)

ICID–SITE–IFAD Conference

How do households react to climate variation?

	Short mig	ration	Long Migration			
	Non-Agri Period	Agri, Period	Non-Agri Period	Agri, Period		
	(1)	(2)	(3)	(4)		
Climate variation						
Rainfall at t		-0.128**		-0.279		
		(.0487)		(.1736)		
Rainfall at $t-1$	0.219^{***}	-0.274^{***}	-0.0209	-0.0921		
	(.0502)	(.0719)	(.1492)	(.3390)		
Rainy days at t		0.156		-0.275		
		(.1043)		(.2691)		
Rainy days at $t-1$	-0.0620	-0.813^{***}	-0.201	-0.608		
	(.0652)	(.2208)	(.3263)	(.6853)		
Climate variation \times 2003 Ind. Level	Yes	Yes	Yes	Yes		
Household variables	Yes	Yes	Yes	Yes		
Years fixed effects	Yes	Yes	Yes	Yes		
Village fixed effects	Yes	Yes	Yes	Yes		
Household fixed effects	Yes	Yes	Yes	Yes		
Mean values	1.235	.714	.126	.205		
Number observation	2673	2667	2673	2667		

Are migrations improving household living standard?

Conditional change-score model

 $\Delta Level_{hv} = \alpha_1 \Delta Mig_{hv} + \alpha_2 \Delta X_{hv} + \gamma Level_{hv_{03}} + \tau_v + \epsilon_{hv}$

- $\Delta Level_{hv}$, change in the level of the household living standard
- $Level_{hv_{03}}$, level at the first period
- ΔMig_{hv} , number of migrations occurs in the household between 2003 and 2013.
- ΔX_{hv} , change in household demographic profile

An Instrument for migration: Migration network

Network in the village and in the household:

- Proportion of migration in each village in 2002
- Number of migration in the household between 1991 and 2001

Are migrations improving household living standard?

	Dependent variable: Change in living standards level between 2003 and 2014								
	Productive Index			Consumer Index			Housing Index		
	OLS	IV-GMM	IV-GMM	OLS	IV-GMM	IV-GMM	OLS	IV-GMM	IV-GMM
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Number of migrations, household									
Long term migration	0.0502^{***}	0.171^{***}		0.0535^{***}	0.215^{***}		0.125	1.632*	
	(.0121614)	(.0460204)		(.0159169)	(.0423117)		(.1398615)	(.7055198)	
Short term migration	0.0138^{**}		0.0469^{***}	0.0148**		0.0466^{***}	0.0885		0.186
	(.0043572)		(.0054315)	(.0051727)		(.0060887)	(.0629969)		(.106618)
Level at the first period									
Rank, 2003	-0.574^{***}	-0.597^{***}	-0.588^{***}	-0.798^{***}	-0.846***	-0.810^{***}	-0.461^{***}	-0.491^{***}	-0.454^{***}
	(.0221774)	(.0244792)	(.0202956)	(.0348797)	(.0316513)	(.035466)	(.0350559)	(.0356251)	(.0346138)
Changes in household demographies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	2603	2603	2603	2604	2604	2604	2332	2332	2332
Village fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hansen J statistic		2.540	2.707		0.071	2.907		0.778	3.142
Hansen J statistic, p-value		0.2809	0.2583		0.9652	0.2337		0.6779	0.2078
LM statistic, instruments		14.167	17.970		14.704	17.872		15.096	17.724
p-value, LM statistics		0.0027	0.0004		0.0021	0.0005		0.0017	0.0005
Centered R2	0.3166	0.2870	0.3011	0.4725	0.4385	0.4630	0.1496	0.1726	0.1831

1 Introduction

- 2 Region of study
- 3 Data & Descriptive Statistics
- Empirical models & results

Conclusion

Research questions

- Are migrations a respond to climate variation?
- And how do migration impact socio economic vulnerability in Rural communities?
- Define two types of migration: short-term migration and long-term migration
- Significant association between climate variation and short-term migration
- Short-term migration seems to appear as a defensive response to climate variation
- Positive effect of both migrations on household living standard in Niakhar
- Long-term migration seems to be an explicit strategy to escape from poverty

Ulrich NGUEMDJO (AMSE/LPED) ICID-SITE-IFAD Conference

THANK YOU FOR YOUR ATTENTION

Ulrich NGUEMDJO (AMSE/LPED) ICID-SITE-IFAD Conference

October 4, 2018 22 / 22